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Supplementary Text S1: Different models of interaction

The regression model described in Box 1 is quite general, encompassing a number of different specific

cases. Suppose we consider a model of recessive effects (on the log-odds scale) at each of two diallelic

interacting loci, so that the binary factors xB and xC correspond to indicators of homozygosity for the risk-

modifying allele at each locus. The expected log-odds of disease implied by the regression formulation,

given an individual’s two-locus genotype combination, are shown below:

Locus C

Genotype c/c c/C C/C

b/b α α α+ γ

Locus B b/B α α α+ γ

B/B α+β α+β α+β+ γ+ i

If, instead, we consider a dominant model, whereby a single allele at each locus is sufficient to

modify disease risk, we obtain the expected log-odds:

Locus C

Genotype c/c c/C C/C

b/b α α+ γ α+ γ

Locus B b/B α+β α+β+ γ+ i α+β+ γ+ i

B/B α+β α+β+ γ+ i α+β+ γ+ i

The actual value of the expected log-odds in each genotype category will depend on the values of

the regression parameters α, β, γ and i. For example, under the recessive model, if these parameters took

values α = 0.5, β = 0.5, γ = 1 and i = 3, we would obtain log-odds values:

Locus C

Genotype c/c c/C C/C

b/b 0.5 0.5 1.5

Locus B b/B 0.5 0.5 1.5

B/B 1 1 5

The penetrance values (probabilities of getting disease) corresponding to this model (i.e. the values

of p rather than of ln[p/(1− p)]) may be calculated using the identity p = exp(ln[p/(1−p)])
1+exp(ln[p/(1−p)]) , and are:
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Locus C

Genotype c/c c/C C/C

b/b 0.62 0.62 0.82

Locus B b/B 0.62 0.62 0.82

B/B 0.73 0.73 0.99

Note that models with interaction effects on one scale (e.g. the penetrance scale) may correspond to

models with no interaction effects on another scale (e.g. the log-odds scale). For example, if under the

recessive model on the log-odds scale the regression parameters took values α = 0.5, β = 0.5, γ = 1 and

i = 0, we would obtain log-odds values:

Locus C

Genotype c/c c/C C/C

b/b 0.5 0.5 1.5

Locus B b/B 0.5 0.5 1.5

B/B 1 1 2

Here, possession of the risk genotype B/B adds a unit of 0.5 to the log-odds while posession of the

risk genotype C/C adds a unit of 1.0 to the log-odds, with no additional (interaction) term required for

possession of risk genotypes at both loci. The penetrance values corresponding to this model are:

Locus C

Genotype c/c c/C C/C

b/b 0.62 0.62 0.82

Locus B b/B 0.62 0.62 0.82

B/B 0.73 0.73 0.88

Here, possession of the risk genotype B/B adds a unit of 0.11 to the penetrance while posession of

the risk genotype C/C adds a unit of 0.20. However, subtraction of an additional -0.05 (i.e. an interac-

tion term) is required when both risk genotypes (B/B and C/C) are possessed. This example illustrates

the well-known fact that statistical interaction effects are affected by changes of scale 1: essentially the

regression parameters, including interaction terms, are defined relative to some particular scale of inter-

est. This phenomenon has led to some confusion in terminology 2 concerning whether interaction effects
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represent departure from a linear (i.e. additive) model or from a multiplicative model, with respect to the

main effects of the two loci. A model that is additive on the log-odds scale will be equivalent to a model

that is multiplicative on the odds scale, and so departure from either of these models may be considered

as equivalent. However, this departure would not be equivalent to departure from multiplicativity on the

original log-odds scale.

A more general ‘genotype’ model for the effects of two loci allows for different parameters to repre-

sent the effects of having a single copy (i.e. being heterozygous) or two copies (i.e. being homozygous)

of a risk-modifying allele, as shown below:

Locus C

Genotype c/c c/C C/C

b/b α α+ γ1 α+ γ2

Locus B b/B α+β1 α+β1 + γ1 + i11 α+β1 + γ2 + i12

B/B α+β2 α+β2 + γ1 + i21 α+β2 + γ2 + i22

This model includes nine different parameters: a parameter α that represents the ‘baseline’ log-

odds for an individual who has genotypes b/b and c/c, parameters β1 and β2 representing the effects of

replacing one or both alleles at locus B with the modifying allele B, parameters γ1 and γ2 representing

the effects of replacing one or both alleles at locus C with the modifying allele C and four interaction

parameters i11, i12, i21, and i22. This is known statistically as a ‘saturated’ model, which means that it is

fully parameterized: nine two-locus genotype categories are modelled by nine parameters, and so these

parameters may be chosen (estimated) to fit the observed nine two-locus penetrances or log-odds values

precisely. No other model exists that can fit the observed penetrances any better. All other models can

be considered as sub-models of (‘nested’ in) this most general model. Although the saturated model

provides the best possible fit to the data, it includes many parameters. In statistical terms, we are usually

interested in determining whether a model with fewer parameters can fit the data ‘almost as well’. The

4 degree of freedom (df) test of interaction (i11 = i12 = i21 = i22 = 0) tests whether the interaction terms

are required at all. We may also make parameter restrictions to the interaction model to generate fewer

df (while retaining one or more interaction parameters) and thus increase power. The recessive and

dominant models correspond to models in which certain parameters are set equal either to zero or to each

other. An alternative is to assume alleles act additively within a locus, which corresponds to assuming
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β2 = 2β1, γ2 = 2γ1, i12 = i21 = 2i11 and i22 = 4i11. This restriction converts the nine-parameter ‘genotype’

model into a four parameter ‘allelic’ model, ln[p/(1− p)] = α+β1xB + γ1xC + i11xBxC, where xB and xC

are variables taking values (0,1,2) according to the number of risk alleles at locus B and C respectively.

This model contains a single interaction parameter i11 that may be freely estimated; a modified version

of this model, that makes further restrictions on the relative magnitudes of β1, γ1 and i11, has also been

proposed 3.
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